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EVALUATION OF THE USE OF A SINGULARITY ELEMENT IN FINITE- 

ELEMENT ANALYSES OF CENTER-CRACKED PLATES 

by Alexander  Mendelson,  Bernard Gross, and  John E. Srawley 

Lewis Research  Center 

SUMMARY 

Two different  methods a r e  applied  to  the  analyses of finite width linear  elastic 
plates with central  cracks. Both methods  give  displacements as a primary  part of the 
solution. One method makes  use of Fourier  transforms.  The  second method  employs 
a coarse  mesh of triangular  second-order  finite  elements  in  conjunction with a single 
singularity  element  subjected  to  appropriate  additional  constraints.  The  displacements 
obtained  by these two methods a r e  in very good agreement.  These  results  suggest con- 
siderable  potential  for  the  use of a cracked  element  for  related  crack  problems,  par- 
ticularly  in  connection with the  extension  to  nonlinear  material  behavior. 

INTRODUCTION 

The  purpose of th i s  study was  to  compare  results of two methods of numerical  anal- 
ysis that  model  the  deformation of cracks in  two-dimensional  bodies of linear  elastic 
materials.  The study is preliminary  to  the  further  development of a hybrid  finite- 
element  method  for  application  to  cracked  bodies of nonlinear  materials.  The  hybrid 
method  employs a special  crack-tip  element that can  be  designed  to  satisfy a variety of 
conditions. It w a s  considered  necessary first to  evaluate  the  accuracy of the  hybrid 
method for  linear  material  behavior  by  comparison with an  inherently  more  accurate 
method  that  makes  use of Fourier  transforms and satisfies  compatibility  and  equilibrium 
throughout  the  body.  The two methods  were  applied to centercracked  plates of finite 
width for which linear  elastic  stress  intensity  coefficients have  been  obtained with  high 
accuracy  by  several  investigators  (refs. 1 to 4). 

The  Fourier  transform  method  reduces  the  problem  to  the  solution of a pair of 
Fredholm  integral  equations  that  can be solved  by a simple  iterative  process which is 
rapidly  convergent.  The  advantages of the  method a r e  that  the  crack  surface  displace- 



ments are a direct  result of the  solution of the  integral  equations,  the stress (and strain) 
distributions are given  by  simple  quadratures,  and  the  required  computational  program 
is fairly  simple.  The  ordinary  finite-element  method is inherently  unsatisfactory  for 
resolution of displacements  very  near  to  the  crack  tip  because of its essentially  discrete 
nature.  The  introduction of a finite  element  that  itself  contains a crack (ref. 5), called 
a singularity  element  (ref. S), avoids  this  difficulty,  but at the  cost of loss of conditions 
of interelement  continuity of displacement. In the  present  study a crack  tip  element of 
the  inverse  square  root  singularity  type was incorporated  into a coarse  mesh of second- 
order  elements  to  model  the  deformation of the  crack and  compute s t r e s s  intensity  coef- 
ficients.  The  results  compare  quite  favorably with those of the  Fourier  transform 
method,  and  thus lend  confidence  in the  further  development of the  hybrid  method  for  ap- 
plication  to  nonlinear  material  behavior  (which wil l  require a different kind of crack  tip 
element,  however). 

SYMBOLS 

2a 

B 

2b 

[Dl 

FT 

FE 

G 

KI 

[kl 

2L 

crack length 

plate  thickness 

plate width 

elastic  matrix  for  plane  strain  conditions 

Fourier  transform  method 

finite  element  method 

shear modulus 

s t r e s s  intensity  factor,  mode I 

element  stiffness  matrix 

plate  length 

mesh  density,  number of finite  elements  per  unit  area 

nodal force column vector 

polar  coordinates 

dimensionless  stress 

displacement  matrix 

displacement  column  vector 

displacements  in  x  and  y  directions 
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uniform end dispJa cement of plate 

dimensionless Cartesian coordinates with respect  to b 

strain  matrix 

strain column vector 

components of strain column  vector 

plate  length  to  plate width ratio 

Poissons  ratio 

dummy  integration  variables 

s t ress  column  vector 

components of s t ress  column  vector 

column  vector,  m X 1 

matrix,  m X m 

FOURIER TRANSFORM  SOLUTION 

We consider  the  plane  stress  solution  for  an  infinite  strip  loaded in tension.  The 
strip is two units wide  and contains a central  crack of length 2a. Because of the  sym- 
metry we need  consider only one quadrant  such as the  upper  right  quadrant.  The  details 
of the  solution a r e  given  in  appendix A. Here, we summarize  the  equations and  method 
used in the computations. If v(x, 0) is the  displacement  along  the  crack,  then, as shown 
in  appendix A, the following equations  must  be  satisfied: 

here, v is the  displacement of the  crack divided by the  ratio of the load to  the  elastic 
modulas and 

where 



and 

The  functions K, K1, %, and I1 are given  by  equations 
appendix A. 

(19), (18), (25), and (21) in 

The  solution is obtained as follows.  Assuming p(v) equal  to  zero, equation (1) is 
solved  for v(x, 0). This is done  by  straightforward  iteration  since  equation (1) is a 
simple  Fredholm  equation of the  second kind, which converges  very  rapidly. Once 
v(x, 0) is determined  the  integrations  indicated  in  equations (2) to (4) a re   car r ied  out suc- 
cessively  to  determine p ( ~ ) ,  which is then  substituted  into  equation (l), and  the  process 
is repeated  until  there is no longer  any  significant  change  in  either v(x, 0) or  p(v). The 
whole process  converges  very  rapidly,  four  or  five  iterations  being  sufficient  for  any 
engineering  application. 

Once  the  crack  surface  displacement is determined  from  the  solution of equations 
(1) to (4),  the s t r e s s  at any point can  be  computed  by  simple  quadrature as follows: 

where  the  functions 11,  12, K2,  K3, and K4 a r e  given  in  the  appendix. We note  that  in 
performing  the  numerical  integrations  in  equation (l), a difficulty arises  from  the  fact 
that the  kernel K(x, v) is singular  at v = a/b. However, the  principal  value  can be  cal- 
culated as is shown in reference 7. 

Figure 1 shows results obtained  by this method  (originally  published  in  ref. 4). On 
the  scale of this plot the individual  values of the  dimensionless  stress  intensity coeffi- 
cient 2KIBb/Pa'/2 would be indistinguishable  from  the  curve shown. Values  taken 
from  references 1 and 2 for  comparison would also be indistinguishable  from  the  curve. 
Further,  results  by  this  method are compared  subsequently  with  results  obtained  by  the 
finite-element  method. 
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FINITE-ELEMENT ANALYSIS 

Consider  the  plane  elasto-static  solution  for a plate of finite  dimensions,  subject  to 
a uniform end displacement.  The  plate  has a central  crack of length 2a and width 2b 
(fig. 2). Because of symmetry, we need consider only one quadrant. A mesh is gener- 
ated of the  type shown in  figure  2(c).  The  stiffness  matrices  for  the  triangular  and 
singular  elements  (fig. 3) are evaluated as shown in  appendix  B  by  the  following  equa- 
tions: 

element 

element \ / 

The  matrices [r], [Dl, [C], and [TI]   are  defined  by equations  (28), (29), (36), and (37) 
in  appendix  B. 

The  master  stiffness  matrix  is  then obtained  by superimposing  the  various  influence 
terms of the  finite  elements  sharing  common  nodal  points.  The  solution  to  the  master 
stiffness  matrix is then obtained by  satisfying nodal equilibrium  and  boundary  displace- 
ment conditions. 

NUMERICAL RESULTS 

The  finite-element  representation of the problem  solved is shown in  figures 2 and 3. 
The  computational  scheme is illustrated by the  simple flow diagram as shown in  fig- 
ure  4. A comparison of dimensionless  displacements  along  the  crack  quadrant  surface 
i s  given  in  figure 5. As shown in  these  figures, the  finite-element  displacements  com- 
pare  favorably with that  computed with the more  accurate  Fourier  transform method. 
Because  the  Fourier  transform  method  satisfied  the  conditions of compatibility  and 
equilibrium  throughout  the  strip,  one would expect  that  the  results of this  approach  to 
be more  accurate. It is noteworthy that the  Fourier  transform  results  correspond  to 
elliptical  crack  profiles  in all three  cases.  Table I lists the Y stress intensity  coeffi- 
cients  obtained  herein  and  from  references 3 and 5. Since displacements are the  pri- 
mary solution, the Y values  were  based on the  computed  nodal  displacements. A s  the 
ratio X decreased  for a fixed  number of elements (fig. 2), the  comparison  improved. 
This was primarily  due  to  the  fact  that, as X decreases the  finite  elements  per  unit 
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area, N (or  mesh  density)  increases.  The Y stress intensity  coefficients showed a 
much greater  sensitivity  to  the h variation  than  the  displacements. 

As shown in  figure 3, the  location of the  crack  tip was always  taken at the  midpoints, 
between  nodes 3 and 5. Node 4 was always  taken at the  midpoint  between  the  crack  tip 
and  node 3. A  preliminary  study  revealed  that  the  results  obtained by locating the crack 
tip d o  percent  from  the midpoint  produced a small  variation  in  the  results.  For  larger 
changes  in  the  crack  tip  location  significant  differences  appeared. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, December 1, 1971, 
134-03. 
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APPENDIX A 

FOURIER TRANSFORM ANALYSIS 

We consider  the-problem of an infinite s t r ip  of width 2b and  thickness B, contain- 
ing a central  crack of length 2a. The  strip is loaded in  tension with a tensile stress 
om, normal  to  the  plane of the  crack.  The stresses and  geometric  variables are non- 
dimensionalized  in  terms of om and W, respectively.  Because of symmetry, only 
one  quadrant of the  plate  need  be  considered as shown in  figure 6. The  solution is ob- 
tained  by  the  superposition of two solutions  designated  by A and B. 

Problem A consists of a plate with a central  crack, a tensile  load at infinity, a 
normal  load p(x) along  the  crack  surface,  and a self-equilibrating  side  load Q(y) at 
x = 1 (fig. 6). Problem B consists of a plate without a crack and without a load at 
infinity, but with a side  load -Q(y) at x = 1 (fig. 6). By superposing  the  solutions  to 
both these  problems with the proper  choice of Q(y) one obtains  the  desired  solution  to 
the  problem of figure 6. 

The  solution  to  problem  A  can  be obtained as follows.  The  equilibrium  and  com- 
patibility  equations  for  the  plane  problem of elasticity are 

- asxy + - = o  7 

Applying a Fourier  sine  transform  to  the first of these  equations  and  Fourier  cosine 
transforms  to the last two, solving  the  resulting  ordinary  differential  equations  and  then 
taking  the  inverse  transforms  results, as shown in  detail in reference 7, in 

7 



J 
That  equations (9) indeed  satisfy  equations (8) can  be  verified  by  direct  substitution. 

The  displacements  can now be calculated  from  the  usual  stress-strain  relations and 
strain  displacement  results  resulting for the  case of plane s t ress  in 

Along the  plane of the  crack  (y = 0) 

and 

Since  equations (11) represent  Fourier  series  expansions, it follows  that 

Am = 4' Sy([, 0)cos mr[ d[ 

and also 
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The  upper  limit of integration  in  equation (13) follows  from  the  fact  that 

Assuming a normal stress distribution p(x) along  the  crack  surface,  equation (12) can 
be  written 

Now, substituting (14) into  the  second of equations (11) and  equation (13) into  the first of 
equations (11) results  in 

v(x, 0) = V(Y, O)dv + - p(v)ln  COS - cos . x ) ~ ] ~ v  
a 

+ 1 f 1  Sy((,  0)ln b(cos ng - c o s   m ) q d (  
a a/b 

where 

s ((,O) = 1 + y  v(v, 0) 1 - cos KV cos K(  Y dV 
2 (cos a v  - cos 715) 2 

and  where the following identities 

2 cos mav 
m = l  

have  been  used 

)- m cos  mav  cos msg = - - 1  1 - cos a y  cos 85 

(cos av - cos s t )  m= 1 2 J 
The first identity  in  equations (17) can  be found for  example  in  reference 8 (p. 358). 
The  second  can  be  obtained  by  differentiating  the first one  twice.  It is obvious of course 

9 



that  the  second sum is divergent.  Whether  the  formal  sum  given  has  meaning  can only 
be  ascertained  from  the  final  answer, which in  this  case  can  be shown by direct  substitu- 
tion  to  satisfy  the  equations of equilibrium and compatibility. 

Finally  substituting  equation (16) into (15) gives 

where 

K1 = - In  COS nu - cos nx) ] 1 2 
77 

=(; + .) x(; - v) 2n sin n(x + v) sin n b  - v) 

sin 2n sin 
2 2 

2 2 

r 1 

- In sin 
2 

4- 

For a given pressure  distribution p( v) along  the  crack,  equation (1) represents a Fred- 
holm  equation of the  second kind.  It can  be  solved  by a straightforward  iteration which 
converges  very  rapidly. 

Once the  crack opening is determined  by  the  solution of equation (l), the  stress  dis- 
tribution  can  be  obtained  by  direct  numerical  integration as follows:  Substituting  equa- 
tion (13) into  equation (9), reversing  the  order of integration and summation, and for- 
mally  summing  the  resulting  infinite  series  give 
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where 

At the  side  boundary x = 1 we now have a self-equilibrating  normal  load 

which can  be  computed  from  the  second of equations (20). We have  thus  obtained a so- 
lution  to  problem A. 

The  solution  to  problem B is given  in  reference 9 (p. 412). For an  infinite strip 
with a symmetric edge  load Q(y), we take  the  infinite  Fourier  transform 

Then  the  stresses are given  by 
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sx = - 4[9f) (sinh 5 + 5 cosh  5)cosh Ex - gx sinh 5 sinh f x  - cos 5y df 
n 25 + sinh 25 

(sinh 5 - f cosh 5)cosh fx + ex sinh f sinh Ex 
~ cos 5y d t  (23) 

25 + sinh 25 1 
NOW at Y = 0 this  solution  gives a s t ress  in  the  y  direction  given by the second Of 

equations (23) 

O S V S -  
a 
b 

where 

K2 = - 4 (sinh f - 5 cosh  5)cosh ( v  + 5~ sinh 5 sinh tV 
n 25 + sinh 25 

By combining the solutions of problems A and B we can  obtain a solution  in which both 
the  side  loads Q(y) and the  normal  loads on the  crack  surface  cancel.  This  can  be done 
by the  simple  iterative  procedure  described  in  the body of the  report. 
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APPENDIX B 

FINITE ELEMENT ANALYSIS 

In the following analysis  it is assumed that the body forces   are  negligible  and  that 
the  model  material is homogeneous  and isotropic,  has a constant  thickness,  and i s  sub- 
jected  to  plane  strain  elastostatic conditions.  Define 

{ S }  = 

" 

vl 

"2 

'6 

u2 

3 

{ € }  { u }  = u 

l Y  

Thus, we can  also write 

Imposing  virtual  displacements at the  element  nodal  points  and  equating  the  work  done  by 
by  nodal  force { P} to  the  internal  work  done  by  the stress { (T} (ref. lo), we obtain 

{ P }  = B  / JkVy{u}dA 
area 

where  superscript v refers to virtual and T to  transpose. Substituting  equation (29) 
and (28) into the last equation  and  comparing  coefficients  yields 
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Hence, 

where 

The  typical  triangular  element as shown  in figure  3 is assumed  to  be a second-order 
element.  The  displacement  functions a r e  as follows: 

where 

The  constants  ai, m, i = 1, 2, . . . , 6 a r e  evaluated  such  that, a t  location  (xm, y,) of 

[T(x,  y)] is obtained.  The  element  stiffness  matrix is evaluated  in a manner  similar  to 
that  in reference 11. 

node m, W,(Xm,Ym ) = 1 and  Wm(x2, y L )  = 0 at  the  remaining 2 nodal  points.  Thus 

For the  singularity  element as shown in  figure  3  the  displacement functions,  taken 
from  references 12 and  13, are  assumed  to have the general  form 
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For odd values of n 

fn(ny e)  = F1(n, B)sin 0 + F2(n, 8)cos 8 

gn(n, 0 )  = Fl(n, 6)cos e - F2(n,  0)sin 8 

where 

and 

for  even  values of n 

where 

and 

fn(n, 0) = F3(n, B)sin 8 + F4(n, @cos 8 

gn(n, e) = F3(n, @cos e - F4(n, e)sin e 

F3(ny 0) = (3 - n - 4p)cos(n - l )e  + (n + l)cos(n + l )e  1 
(34) 

(3 5) 

F4(n, 6 )  = -(3 + n - 4p)sin(n - l)e + (n + l)sin(n + l)e J 
To obtain  the  singularity  element  stiffness  matrix,  the  element is divided  into  many (p) 
segments. A typical  segment is shown in  figure 3. From  equation (27) in  matrix  formu- 
lation we have 

I U) = [HI{ d l  

At the six nodal  points we evaluate 

{ S I  = [ C I W  ( 36) 
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and it follows that 

element \ 

Let 

After  some  algebraic  manipulation and integration  the  matrix  elements  become 

where q, t = 1, 2, . . . , 12, p is the  number of segments of the  cracked  element, and 

16 



where 

X - n - -  1 
l -  2 

and 

X 2 = n - -  3 
2 

X3 = (n - 1) 

d [F(n, e)] = F'(n, e) 
dB 
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TABLE I. - DIMENSIONLESS  STRESS  INTENSITY 

COEFFICIENTS FOR  VARIOUS  NOTCH 

DEPTH TO PLATE WIDTH  RATIOS 

AND  MESH  DENSITY 

Method 

Fourier 
transform 

Finite  ele- 
ment 

Source Mesh Notch depth to  plate width 
density, ratio,  a/b 

N 
0. 1 0.305 0.333 0 .3  

Dimensionless s t ress  in- 
tensity  coefficient, 
Y = (2bBKI)/(P$) 

Ref. 3 1.79 

Ref. 5 _"_  
This  report I i"$ 1 - - - -  

2.5  - 

2 . 4 -  

> 
" 2 . 3  - 
m 
u 
.- .- 
L - 2 . 2 -  
V 
x .- 

? 2.0 
VI 

VI 

1.9 - 
0 

c 
.- 

E 1.8- 
n 

Pa112 
2Bb 1.7 - 

KI=Y. - 

1.6 0 , .1 . 2  . 3  . 4  .5 . 6  

Crack  length to plate  width ratio, alb 

Figure 1. - Stress  calibrations  for  center-cracked  specimen 
(refs. 1, 2, and 7). 

aNot available. 



t 
i 

(alb = 0. 100, o r  0.300, 0.333) (alb = 0.5051 

(a)  Center  cracked  plate  subjected  (b)  Dimensionless (c) Typical  finite-element  mesh  for  quarter  section. 
to uniform  end  displacement, VO. quarter  section. 

Figure 2. - Plate  configuration  and  typical  f inite-element  mesh. 

Crack  element  with  node  locations  at 
verticies  and  midpoints  and  typical 
segment  used  for  numerical  inte- 
grat ion 

Typical  2nd  order  triangular  element  with  node 
locations  at  verticies  and  midpoints 

Figure 3. - Typical  finite-elements  for  center  cracked  plate. 

Cal l   s ingular i ty  
element  stiffness 

Singular i ty  

subrout ine 

Call   master 
st i f fness  matr ix 
subrout ine 

element  si i f fness J 
subrout ine 

1 . .  

Yes 

1 

u 

No 

Figure 4. - Simpli f ied f l w  diagram  of  program  operations. 
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